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ABSTRACT
In this work we explore optimising parameters of a physical cir-
cuit model relative to input/output measurements, using the Dal-
las Rangemaster Treble Booster as a case study. A hybrid meta-
heuristic/gradient descent algorithm is implemented, where the ini-
tial parameter sets for the optimisation are informed by nominal
values from schematics and datasheets. Sensitivity analysis is used
to screen parameters, which informs a study of the optimisation
algorithm against model complexity by fixing parameters. The re-
sults of the optimisation show a significant increase in the accuracy
of model behaviour, but also highlight several key issues regarding
the recovery of parameters.

1. INTRODUCTION

Accurate simulation of vintage audio circuits by physical mod-
elling invariably requires the determination of component param-
eters. In principle, parameters can be obtained through measure-
ment of individual components. This can present a practical
dilemma though as it requires isolation and therefore deconstruc-
tion of the circuit, which particularly for vintage circuits carries
hazards such as component damage. A possible way around this
problem is to estimate the parameters solely from input/output
(I/O) measurements, which can be taken without disassembly. Only
requiring the most basic interface with a system, I/O measure-
ments can provide significant information regarding its behaviour
with relatively little effort.

The literature provides several techniques that use I/O mea-
surements to calibrate black-box models, which have the advan-
tage that knowledge of the actual physical component parameters
is not required, and are generally designed to allow a relatively
straight-forward model parameter estimation. For nonlinear sys-
tems a method of using a swept-sine to excite a system and apply-
ing an inverse filter to the output, described as ‘nonlinear convo-
lution’, was proposed by Farina [1, 2]. This method was initially
used for acoustic systems but was further applied to nonlinear au-
dio circuitry in the form of Chebyshev [3] and generalised poly-
nomial Hammerstein models [4]. Accurate modelling of the phase
response is not guaranteed using this method, requiring synchro-
nisation between input and output measurements [4, 5]. Addition-
ally, a single set of kernels only accurately models the system at
a single input level. As nonlinear systems can vary based upon
amplitude it is necessary to model a continuous range of input am-
plitudes, which has been achieved using interpolation between sets
of kernels [6].

Alleviation of these issues can be achieved using a priori knowl-
edge of a system. For example, a block-oriented parametric Wiener-
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Figure 1: Diagram illustrating the evaluation of a parameter set θ
by comparison of a physical model with said parameters and the
desired analogue audio effect.

Hammerstein model designed specifically for distortion circuitry
[7] can be said to use partial system knowledge. The partial knowl-
edge, in this case the form of the nonlinear behaviour, constrains
the identification procedure to aid in the capture of the effect’s be-
haviour.

Going a step further, physical models are based on the pre-
sumption of total knowledge of the system’s behaviour. As well
as accurately modelling a system’s phase response and response to
input amplitude (dependent upon accurate modelling of the gov-
erning physical laws), physical models can additionally capture
parametric behaviour exhibited in audio effects by potentiometers,
which change the behaviour of the audio effects. The two most
popular physical modelling techniques, Wave Digital Filters [8]
and state-space models [9], both have methods of working with
parametric behaviour, with particular focus on efficiency given for
state-space models [10]. However, this gain in functionality comes
with a large increase in model and computational complexity. Fur-
thermore, unlike models derived from system measurements, pa-
rameters for these models are typically extracted from nominal in-
formation available in datasheets and schematics which may not
be representative of a real circuit. An exception to this strategy
is when complex component models are tabulated using measure-
ments [11]), but this requires isolation of the component.

In this paper we explore the utilisation of I/O measurements to
improve the accuracy of physical models relative to specific real-
world circuits. Figure 1 illustrates the evaluation of an objective
function F (θ) as a measure of the fit of a physical model to a
specific audio effect based upon a comparison between the circuit
output voltage Vout and the model output voltage V̂out. The cen-
tral challenge then becomes finding a parameter set that minimises
the objective function for a sufficiently general excitation signal,
which can be done using iterative optimisation methods. Such
an approach evidently relies on the ability of the chosen physi-
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cal model to capture the circuit’s behaviour. An immediate fur-
ther question that arises is whether a parameter set that has a low
objective function value but nevertheless deviates in one or more
parameters (the search space proves to typically contain many of
such local minima) should be considered successful. While ideally
one aims to recover the parameter set that lies closest to a physical
target set, in practice (i.e. when optimising on measured results)
such a target reference is not available, and the only workable cri-
terion is the objective function. Given this lack of a direct measure
of the parameter accuracy, it is proposed here that the optimisation
is deemed successful if (a) the parameters lie within a physically
feasible range and (b) the optimised set results in accurate model
output over the relevant range of input signals and circuit poten-
tiometer settings. The first criterion implies that the optimisation
should be constrained, and the second criterion motivates perform-
ing a post-optimisation validation of the optimised parameter set
using a map of driving signals of different amplitudes and frequen-
cies within the expected input ranges.

The chosen case study for this paper is the Dallas Rangemas-
ter Treble Booster pedal, the schematic of which is shown in Fig-
ure 2. The circuit creates a high-pass filter effect and distortion
caused by the nonlinear behaviour of the germanium transistor,
a Mullard OC44. The Rangemaster is a suitable initial test case
for exploration of parameter optimisation of nonlinear audio ef-
fects units because despite the relative simplicity of the circuit its
study fully exposes the same key challenges that can be expected
in more complex systems. Three individual I/O data sets are taken
of the circuit, one simulated from a stochastic parameter set, and
two measured from the circuit using different transistors.

The rest of this paper is structured as follows: Section 2 dis-
cusses the selected model, details the approach used to optimise
the model based on measurements, and also describes the mea-
surement procedure. Section 3 details the application of sensitiv-
ity analysis to the model to screen the parameter set, informing
a study of the performance of the optimisation algorithm with re-
spect to increasing complexity in the model. Section 4 presents the
results of the optimisation upon the I/O data sets and analyses the
results using a validation data set. Sound examples are available
on the first author’s website1.

2. OPTIMISATION METHOD

2.1. Circuit Description

2.1.1. Time Domain Model

A circuit can be characterised by its topology and component’s be-
haviour. While the behaviour of two-pin linear components such
as resistors and capacitors can typically be characterised with suffi-
cient accuracy using simple laws involving a single parameter (e.g.
Ohm’s Law), nonlinear components such as transistors or vacuum
tubes are usually modelled with several parameters. The Nodal
DK-method provides a structure for automated derivation of mod-
els from this information in the form of a netlist [12], and for this
reason was chosen to create the models used for the optimisation
procedure. This enables direct optimisation of the parameters of
the circuit as opposed to e.g. state-space matrices.

The Nodal DK-method creates a discrete-time state-space model
of the form

x[n] = Ax[n− 1] +Bu[n] +Cf(vn[n]) (1)

1http://bholmesqub.github.io/DAFx16/
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Figure 2: Schematic of the modelled Dallas Rangemaster Treble
Booster. The potentiometer V R1, named ‘Set’ on the original
pedal, controls the output gain or volume of the circuit.

y[n] = Dx[n− 1] +Eu[n] + Ff(vn[n]) (2)
vn[n] = Gx[n− 1] +Hu[n] +Kf(vn[n]) (3)

wherex,u and y represent the state, input and output respectively,
and the matrices A−H and K specify the linear combinations
that are used to update the model. The behaviour of nonlinear com-
ponents is modelled by the function f(vn), where vn represents
the voltages across the nonlinear components. This function is
specific to the model, e.g. a model for diodes might use the Shock-
ley diode equation. A comprehensive description of the modelling
technique used can be found in [10], with the adaptation to po-
tentiometers described in [13]. Relating this model to the Dallas
Rangemaster circuit, u is the vector of the voltages [Vin Vcc]

T

applied to the circuit, and y is the modelled output voltage V̂out.
It is important to note that the Dallas Rangemaster is paramet-

ric, but that the potentiometer is near equivalent to a linear scaling
in output voltage. This can be inspected by testing two different
models: the first with the potentiometer wiper set to 20% towards
full volume, the second with the potentiometer wiper set to 100%
and the output voltage scaled by 0.2. A chirp test signal between
20 Hz-3 kHz with a peak voltage of 0.2 V was processed by both
models, the comparison revealing a mean squared error of 6 µV.
For this reason, one measurement of the circuit with the poten-
tiometer set at 100% is sufficiently accurate, removing the need to
model the parametric behaviour.

An additional simplification is the removal of the power sup-
ply bypass capacitor, originally placed across Vcc. The capacitor
creates a low-pass filter with the internal resistance of the power
supply, which serves to smooth changes in the supplied voltage.
As the focus of this paper is the usage of I/O measurements of the
signal path, the supply voltage is presumed to be constant, there-
fore making the capacitor obsolete.

2.1.2. Bipolar Junction Transistor

To model the nonlinear behaviour of the BJT, the Ebers-Moll equa-
tions are used. This model has been widely used within the field of
VA modelling [14, 10] due to its computational efficiency in com-
parison with more complex BJT models. The Ebers-Moll model is
represented by two currents with the third being calculated using
Kirchhoff’s current law. Here, the base and collector currents were
selected:

IB =
IS
βF

(
e

VEB
NVT − 1

)
+
IS
βR

(
e

VEB−VEC
NVT − 1

)
(4)
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IC = IS

(
e

VEB
NVT − 1

)
− IS

βR + 1

βR

(
e

VEB−VEC
NVT − 1

)
. (5)

The currents are controlled by the voltages of the emitter-base
junction VEB and the emitter-collector junction VEC. The param-
eters are: IS, the saturation current, βF and βR, the forward and
reverse current gains, andN , the ideality factor. The ideality factor
is not used in the original Ebers-Moll model [15], but is commonly
included in SPICE models, and has been included in the model so
that the model can match a larger range of behaviour. Temperature
was not measured for this study, so the parameter N also serves to
correct the value of VT = 25.85 mV, which presumes a tempera-
ture of 300 K.

2.2. Excitation Signal

Here the term excitation signal refers to the input voltage applied
to the system. To expose the model to a range of frequencies, a
multi-sine signal was selected, consisting of a sum of sinusoids
between two frequency boundaries. This can be represented by

Vin[n] =

mu∑
m=ml

Amsin(2πmf0nT + φm) (6)

where f0 = fs/Ns and T is the sampling period 1/fs. The lower
and upper boundaries ml and mu provide a method of bandlimit-
ing the signal, by selecting values closest to the desired lower and
upper frequency boundaries. Bandlimiting is a desirable property
as it enables a convenient method of focusing the measurements,
for example on the expected frequency range of a guitar.

The phase terms φm are generated using Schroeder phases
[16]

φm = −2π

m−1∑
l=1

(m− l)Am, m = ml,ml + 1, ...,mu. (7)

This selection of phases distributes the sinusoids such that the peak
to peak voltage is minimised, creating a flat amplitude envelope.

To determine the amplitude termsAm, it is helpful to consider
the circuit with the BJT linearised using the Hybrid Pi model [17].
The amplitude response of the linearised circuit illustrated in Fig-
ure 3 shows a significant boost to high frequencies which could
prevent low frequencies from being represented in the output sig-
nal. One method of alleviating this issue is to filter the input signal
using the inverse transfer function, i.e.

Am = |H(jωm)|−1, ωm = 2πmf0 (8)

where |H(jωm)| is the magnitude of the transfer function of the
linearised circuit. The value of Am is infinite at DC, but as the
multi-sine signal can be band-limited, this can be managed by ex-
cluding frequencies close to DC.

Finally, to ensure that the range of voltages is sufficient, a
Hann window is applied, and the signal is scaled so that the peak
voltage is at 2 V. The excitation signal applied to the system has a
length of 200 ms, containing frequencies between 50 Hz− 2 kHz,
as illustrated in Figure 4.

2.3. Optimisation Algorithm

Initial experiments in optimising the parameter set using a gradient
descent method revealed many local minima in the search space.
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Figure 3: Amplitude response of the linearised Dallas Rangemas-
ter circuit.

0 50 100 150 200
Time (ms)

-2

0

2

V
in

(V
)

101 102 103 104

Frequency (Hz)

-20
0

20
40
60

A
m

pl
itu

de
 (

dB
)

Figure 4: Time and frequency domain representations of the ex-
citation signal used for the I/O measurements. The ripple in the
amplitude response is caused by the Hann window.

To overcome local minima, a hybrid metaheuristic/descent method
was implemented, using a Genetic Algorithm (GA) as a technique
to provide a more exhaustive search. The MATLAB function ga
provides a versatile implementation that allows the usage of float-
ing point values as opposed to bit strings which were used in the
original design of GA.

The basis of GA is to mimic principles observed in genetics
and natural selection. The following description is of the MAT-
LAB specific implementation; for a comprehensive introduction
to GA see e.g. [18]. An individual refers to an instance of the set
of parameters that characterise the model, θ = [θ1, ..., θk]T where
k is the number of parameters in the set. The fitness of the in-
dividual is defined by an objective function chosen here to be of
least-squares design:

F (θ) =
1

Ns

Ns∑
n=1

(Vout[n]− V̂out[θ, n])2, θ ∈ Ω ⊂ Rk (9)

where Vout is the measured output signal, V̂out is the modelled
output, and Ω is the search space for the parameter set.

To initiate the algorithm, a population of individuals is ran-
domly generated using a uniform distribution within a range of
parameter values, further discussed in Section 3. The fitness value
of each individual is then evaluated. A population size of 1000 in-
dividuals was chosen by increasing the size of the population until
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the difference in successive generation’s fitness values was negli-
gible. Upon determining the fitness of the population, parents are
selected to create the next generation. The most fit individuals are
selected as elites, which are passed to the next generation without
change. The remaining children are created from either crossover
or mutation. Crossover children are created from two parents, with
individual parameters selected from both parents, combined to cre-
ate children. Mutation children are created from a single parent
by stochastically changing parameter values. Parents are selected
using a stochastic selection which helps to maintain a diverse pop-
ulation (i.e. a high variance of parameter values).

The implemented algorithm creates the next generation using
5% of the past population as elites, and of the remaining popu-
lation 70% are generated from crossover, and 30% are generated
from mutation. This process is then repeated, with the best per-
forming parameter sets being retained while new parameter sets
are generated using crossover and mutation. The main termination
criterion of the algorithm is a limit of 100 generations.

A critical issue encountered when stochastically selecting pa-
rameter sets for the Dallas Rangemaster is that the simulation can
fail. This happens when the nonlinear solver does not converge to
the root of the equation [19]. To counteract this, failing parameter
sets are regenerated using the stochastic technique used to gener-
ate the initial population. This is repeated until the simulation is
successful. In addition to this, the least fit 10% of individuals are
re-generated each generation to improve population diversity.

The GA algorithm is combined with the interior point method
[20] which uses the top 1% of the population as starting points.
This ensures that local minima are found which is not guaranteed
using GA on its own. Individuals optimised with the interior point
method will have a much lower fitness value than non-optimised
individuals, which will cause them to be repeatedly in the top 1%
of the population. As further use of the interior point method on
these individuals will cause no change, they are excluded from
the set which are optimised using the interior point method, and
instead replaced with the next most fit individuals.

2.4. Measurement of the I/O Data Sets

Three I/O measurement data sets are used in this paper: one from a
simulation using random parameters, and two measured from the
Dallas Rangemaster circuit using different BJTs. The two BJTs
selected for the optimisation procedure are a silicon BC557 and a
germanium OC44. The OC44 is the transistor used in the original
Dallas Rangemaster circuit. The BC557 is a general purpose tran-
sistor with no history of use within guitar pedals, and was selected
solely for the purpose of comparison with the OC44, providing a
frame of reference for the modelling of the BJT.

Measured I/O data sets used for the optimisation and sensitiv-
ity analysis were experimentally obtained from the Dallas Range-
master circuit assembled on a breadboard. This was interfaced
with MATLAB via a National Instruments ELVIS II DAQ. For the
data used in the optimisation, measurements were taken at a sam-
ple rate of 100 kHz, with 100 measurements averaged to reduce
noise.

A simulated I/O data set was generated to use as a comparison
against the measured data. In this case there is no possibility of
unmodelled behaviour, thus ensuring that the optimisation can in
principle recover the parameters. This then provides a tool to as-
sess the optimisation problem separate from problems that may be
encountered with the measurements.

Table 1: Parameters used in the modelling of the Dallas Range-
master.

Parameter Value
Nominal Measured Stochastic Sample

R1 470 kΩ 473.250 kΩ 508.209 kΩ
R2 68 kΩ 68.596 kΩ 70.262 kΩ
R3 3.9 kΩ 3.8965 kΩ 3.5416 kΩ
R4 1 MΩ 0.997 MΩ 0.901 MΩ
V R1 10 kΩ 9.999 kΩ 10.56 kΩ
C1 4.7 nF 4.92 nF 4.44 nF
C2 47 µF 46.95 µF 47.54 µF
C3 10 nF 11.57 nF 9.31 nF
βF (BC557) 340 - -
βF (OC44) 90 46− 175 123.95
βR (BC557) 15 - -
βR (OC44) 7 2− 12 5.16
IS 0.1 pA - 0.06 pA
N 1.6 - 1.22

3. PARAMETER ANALYSIS

3.1. Determination of Parameter Values and Ranges

The first column of Table 1 shows the nominal parameters of the
Dallas Rangemaster. Values for the linear parameters were ex-
tracted from the schematic. The selected optimisation algorithm
allows for constraints to be placed on the range of parameters,
which enables the exploitation of the tolerances specified by com-
ponent manufacturers. Each value of the resistors belongs to the
E12 standard which is specified at ±10%, suggesting a sensible
range with which to constrain the value of each linear component
parameter. Due to the idealised component laws used in the design
of the physical model, there is a possibility that the model will not
capture the full behaviour of the circuit. Because of this, the lin-
ear component parameters were constrained to a range of ±20%
to allow for compensation of the possible unmodelled behaviour.
A more effective method would be to increase the complexity of
the component models to capture this behaviour, but the increase
in computational complexity is difficult to justify prior to observa-
tion of unmodelled behaviour. A uniform distribution was chosen
for the linear component parameter set as real distributions depend
on manufacturing techniques.

The BC557 values for βF and βR are based upon values taken
from Linear Technology’s LTspiceIV2. Datasheets and SPICE mod-
els could not be found for the OC44, so the gain parameters were
measured from a small set of the BJT. The measurements were per-
formed by applying a base current while measuring the collector
current when biased in the forward-active region, and the emitter
current when biased in the reverse-active region. This gives values
for βF and βR using the approximate relations

βF ≈ IC/IB, βR ≈ IE/IB.

Although this technique provides only a coarse approximation, it
was only required to inform the range of values to be expected.
The nominal values for IS and N were set to the same value for
both BJTs. The saturation current of different BJTs is often in

2www.linear.com/designtools/software/#LTspice
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the same range, and is difficult to measure accurately. The ideal-
ity factor can vary widely between BJTs, particularly for vintage
transistors as early manufacturing techniques provided less consis-
tency.

Measurements of the OC44 BJT showed the range of βF to
be between 46 and 175, and the range of βR to be between 2 and
14. Because of the wide range of these parameters, and the uncer-
tainty of values of the parameters IS and N , the BJT parameters
were constrained to ±100% of their nominal value. A uniform
distribution was again selected.

The third column of Table 1 shows the values of parameters
used in the simulated data set, using BJT parameters based upon
the nominal OC44 values. These were stochastically generated us-
ing the discussed uniform distributions across the parameter ranges.

3.2. Sensitivity Analysis

Global sensitivity analysis refers to the study of attributing uncer-
tainty in a model’s output to uncertainty in a model’s parameters
and input. The prefix ‘global’ specifies that the analysis is upon
the whole search space as opposed to local operating points. To
provide useful analysis for the optimisation, the fitness function is
analysed to rank the effects of each parameter, and compare this
between each I/O data set. The implemented method, the Morris
method [21] generates trajectories through the search space using
a one-at-a-time strategy i.e. there is a change in only one parame-
ter between neighbouring sample points. An elementary effect of
a parameter can then be defined as

EEi =
F (θ1, ..., θi + ∆, ..., θk)− F (θ1, ..., θk)

∆
(10)

where θi is the parameter changed by the value ∆ for the elemen-
tary effect. The number of calculated elementary effects for each
parameter is given by the number of trajectories, r. To prevent
incorrect analysis of the sensitivity of each parameter, it is essen-
tial to select a large enough value of r. The elementary effects are
processed to create two sensitivity measures, µ∗ and σ expressed
by

µ∗
i =

1

r

r∑
j=1

|EEj
i |, σi =

(
1

r − 1

r∑
j=1

(EEj
i − µi)

2

) 1
2

. (11)

The estimated absolute mean µ∗ reflects the overall influence of
the parameter on the fitness, and differs from the mean µ by using
absolute values of the elementary effects, preventing type II errors
which are caused by negative values [22]. The estimated standard
deviation σ groups both the nonlinearity of the parameter and the
dependence on other parameters relative to the change in the fit-
ness function. Intuitively, this can be understood by considering
a change in the value of the elementary effects: the change must
either be caused by a nonlinear parameter i.e. the effect changes
across the range of parameter values, or by a change in another
parameter due to sampling at other locations in the space.

Analysis was performed using SAFE, a MATLAB toolbox
for Global Sensitivity Analysis [23]. To help prevent any non-
convergent simulations which would create unusable results, the
linear component and BJT parameters were restricted to ±10%
and±40% of their nominal value respectively. A value of 300 was
selected for r to ensure the search space was sufficiently analysed,
although lower values or r also correctly identified the parameters
with the largest and least effect on the fitness function. Figure 5

Parameter Rank
Simulated BC557 OC44

R1 4 3 4
R2 3 2 5
R3 8 5 8
R4 10 11 10
V R1 5 4 6
C1 6 8 3
C2 9 9 9
C3 11 12 11
IS 7 6 7
N 1 1 2
βF 2 7 1
βR 12 10 12

Table 2: Ranking of the circuit parameters by sensitivity value S.

shows the results of the analysis upon the fit of the model to out-
put measurements for the simulated, BC557, and OC44 I/O data
sets. It is worth noting the near-linear relationship between µ∗ and
σ, indicating the parameters that have the largest effect on the fit-
ness function are more nonlinear or heavily influenced by other
parameters (i.e. parameters with high µ∗ values of also have high
σ values).

A metric for ranking parameters by their influence on the op-
timisation procedure was designed as S =

√
µ∗2 + σ2. The rank

of each parameter for each data set is shown in Table 2. Several
similarities can be seen between the data sets: each fitness func-
tion is very sensitive to the parameterN and quite sensitive to both
R1 and R2. The fitness function’s low sensitivity to many of the
parameters in combination with the large range of measured sen-
sitivities indicates that the search space will contain many points
with a similar fitness value; it is likely that this partly reflects a
level of parameter redundancy. As a result, the optimisation may
struggle to find physically meaningful parameter values.

3.3. Limitations of the Optimisation

Using the ranking of parameters of the simulated I/O data set it
is possible to test the optimisation algorithm’s ability to recover
the values of the parameters. The performance of the algorithm
can be tested against model complexity by optimising on only the
Np most sensitive parameters. Figure 6 displays the results of 10
optimisations performed per case for increasing values ofNp. The
parameter error εp is calculated as

εp =
1

Np

Np∑
i=0

(
θ̂i − θ∗i
θ∗i

)2

(12)

where θ∗ is the accurate parameter value (shown in the third col-
umn of Table 1) and θ̂ is the parameter value after optimisation.
As the number of optimised parameters increases, the ability of
the algorithm to accurately retrieve the values decreases. For the
full model, the error is over 15 orders of magnitude higher than
when optimising for just 2 parameters. The transition from accu-
rately recovering parameters to failing to recover them occurs at
the inclusion of the 6th parameter, C1. After this transition the
effect of the increasing quantity of parameters is negligible due to
the constraints of the parameters. Given the nominal values of the
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Figure 5: Results of sensitivity analysis showing Morris measures µ∗ and σ for the (a) simulated, (b) BC557, and (c) OC44 data. Confidence
bounds are indicated by the black lines placed on each marker.
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Figure 6: Box plots displaying the logarithmic scaled error of the
parameter set after optimisation on increasing numbers of opti-
mised parameters. Red crosses indicate outliers, dashed line indi-
cates maximum error possible with parameter constraints.

simulated data set, the maximum parameter error is 1.0433, indi-
cated by the dashed line on Figure 6. Results with parameter error
of this order indicate that the parameters have not been recovered.
The bottom plot of Figure 6 shows the log scale fitness of the re-
sultant parameter sets from the optimisations. Although there is
strong correlation with the parameter error, there is no constraint
upon fitness values so this correlation cannot imply the same con-
clusion as with the parameter error. Fitness values of this order still
provide a good fit between model and system over a wide range of
operation, which can be demonstrated with the use of validation
data (see Section 4).

4. RESULTS AND VALIDATION

4.1. Optimisation on the Full Parameter Set

A map of sinusoidal signals was created as a validation data set.
The map covers a range of 30 peak voltages between
[0.1 V, ..., 3 V], and 30 frequencies between [20 Hz, ..., 3000 Hz],
selected logarithmically. This map was processed by both the sim-
ulation and circuit with a sample rate of 400 kHz to ensure that
the nonlinear solver would converge. Ten measurements from the
circuits were averaged to reduce noise.

Figure 7 shows the error of the model against the measure-
ments of the validation data set. Validation error εV values were
calculated using

εV = 10log10

( Ns∑
n=1

(Vout[n]− V̂out[θ̂, n])2
)

(13)

where θ̂ is the optimised parameter set. As the optimisation algo-
rithm is stochastic, it was repeated 15 times for each I/O data set.
Representative plots were selected by producing an average data
map using each result, and selecting the map that closest matched
this map.

The top row of the contour plots in Figure 7 shows how ac-
curately the I/O data sets are modelled using the nominal values
from Table 1. The bottom row of plots shows how accurately the
I/O data sets are modelled after optimising the model parameters.
The results of the simulated I/O data set illustrated in Figure 7 (a)
and (d) show the results of an ideal optimisation, where there is no
noise from the measurements, and the model is guaranteed to be
able to represent the I/O data set. As the contour plot (d) shows,
the model using the optimised parameters does accurately model
the behaviour of the simulated I/O data set, but not equally well
across the presented range of amplitudes and frequencies, with the
most significant increase in error at higher amplitudes.

A similar increase in error is observed in Figure 7 (e) and (f),
illustrating the model fit to the measured data sets of the BC557
and OC44 BJTs. Generally, the error is larger than that of the
simulated data set, but significantly lower than the error of nominal
parameter plots (b) and (c). This shows that despite not modelling
the circuit behaviour to high accuracy, the fit is significantly better
than with nominal parameters.
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Figure 7: Contour plots of validation error εV against amplitude (peak voltage) and frequency. White space in (a) and (d) indicates
unsuccessful simulations due to nonconvergence.

4.2. Optimisation Using Fixed Linear Component Values

To further investigate the error of the model, a second optimisation
process was performed with fixed values for the linear component
parameters, using the measured values shown in Table 1. This
places the focus of the optimisation on the four BJT parameters
used in the Ebers-Moll model. As two different BJTs were used
in the measurement of the I/O data, the second optimisation aimed
to investigate the performance of the Ebers-Moll model’s ability to
capture the behaviour of both the BC557 and OC44 BJTs. Figure
8 shows an excerpt from the output of the optimised models and
the measured data they are attempting to fit. Figure 8(a) shows sig-
nificantly more error than Figure 8(b), including an obvious phase
difference between the model and the measurements. This points
to the Ebers-Moll model not accurately capturing the behaviour of
the OC44 transistor, indicating unmodelled behaviour that could
be caused by e.g. junction capacitances, terminal resistances, par-
asitic effects etc.

5. CONCLUSION

A preliminary study on fitting a physical model of a guitar effects
pedal to measured I/O data using a brute-force parameter optimi-
sation approach has been presented. In Section 3.3 true recovery
of the parameters from simulated I/O data was shown to work only
for reduced sets of parameters. The results of the sensitivity anal-
ysis in Section 3.2 indicate that this could be (at least partly) due
to the objective function’s insensitivity to some of the parameters.
It is therefore of particular interest in future research to consider
alternative objective functions, alongside exploring different, even
more exhaustive methods for searching the parameter space. An-
other possible route towards improved results regarding recovery
of parameters is to consider other ways of driving the circuit and

collecting the output data; potentially this includes attempts to link
the physical model parameters directly to those typically used in
black-box representations, (e.g. Volterra series kernel coefficients).

Although recovering the actual physical parameters proved
very challenging, the results presented in Section 4 show that the
accuracy of the physical model can be significantly improved us-
ing optimised instead of nominal parameters. While changes in
the measurement method, objective function and optimisation (as
mentioned above) can potentially further reduce the remaining er-
rors, the results plotted in Figure 8 imply that attention must also
be given to the physical model formulation. More specifically, the
significantly better fit of the model to the BC557 transistor I/O data
is a strong indication that the Ebers-Moll model is too simplistic
to capture the behaviour of the OC44 transistor. Hence additional
transistor modelling elements are required to accurately simulate
the Rangemaster and other audio effects pedals and amplifiers fea-
turing germanium BJTs. To address this, a more rigorous study
of such vintage components is required, including high-accuracy
measurement and subsequent comparison with more sophisticated
formulations such as the Gummel-Poon model [24].

A key question to address in the longer term is to what ex-
tent models of more complex, larger circuits could be calibrated
through optimisation on I/O measurement data; for systems with
many more parameters than the Rangemaster it is likely that order
reduction will play an even greater role, which is potentially aided
by parameter screening techniques such as that employed in the
present study.
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